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Abstract

We extend the arti®cial neural network (ANN) technique to the simulation of the time-dependent behavior of a heat

exchanger (HX) and use it to control the temperature of air passing over it. The experiments are carried out in a open

loop test facility. First a methodology is proposed for the training and prediction of the dynamic behavior of thermal

systems with heat exchangers. Then an internal model scheme is developed for the control of the over-tube air tem-

perature with two arti®cial neural networks, one to simulate the heat exchanger and another as controller. An integral

control is implemented in parallel with the ®lter of the neural network controller to eliminate a steady-state o�set. The

results are compared with those of standard PI and PID controller. There is less oscillatory behavior with the neural

network controller, which allows the system to reach steady-state operating conditions in regions where the PI and PID

controllers are not able to perform as well. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Most simulations of heat exchangers and other

components of thermal systems have concentrated on

their steady-state behaviors for heat rate predictions

which are required for system design. The dynamic re-

sponse of these devices, however, is also very important

if these devices are to be controlled in any way. For

example, and this is the one that will be taken up here, a

hot water heat exchanger may be required to provide

heated air at a pre-set temperature that does not change

even though the incoming air or the water may vary in

either ¯ow rate or temperature. In other control appli-

cations, the heat rate may be the parameter that is set.

Heat exchangers (HXs) are extremely complex de-

vices for which the prediction of their operation from

®rst principles is virtually impossible. There are a large

number of phenomena associated with ¯ow and heat

transfer that are perhaps simple to solve singly, but

when combined result in a system that is impossible to

compute. Some of these are: complicated heat and ¯uid

¯ow geometries, turbulence in the ¯ow, existence of

hydrodynamic and thermal entrance regions, non-uni-

form local heat transfer rates and ¯uid temperatures,

secondary ¯ows in the tube bends, vortices in the

neighborhood of the tube-®n junctions, air-side ¯ow

development in ®n passages, heat conduction along tube

walls, natural convection within the tubes and between

®ns, and temperature dependence of ¯uid properties [1].

Thus, even steady-state predictions are not easily made

from a ®rst principles analysis. Dynamic predictions are,

of course, harder and it was not until recently that dy-

namical models started to appear in the literature [2±4].

Most of them, in order to make the problem more

tractable, rely on assumptions and simpli®cations that

are not totally realistic [5±7]. The results thus are qual-

itative rather that quantitatively exact. Some of the most

common assumptions are: lumped thermal conditions,

constant ¯uid properties, constant heat transfer coef-

®cients, constant ¯ow rates, complete transverse mixing

in the ¯ow, negligible heat conduction in the wall, neg-

ligible heat conduction through the ®ns, and negligible

heat capacity of the wall [4]. The models that include

more physics are usually partial di�erential and their

time-dependent solutions are computationally intensive

and are not suitable for real-time control purposes.

Another di�culty is that the performance of a typical
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HX slowly changes over time due to such factors as

fouling that changes the heat transfer characteristics of

surfaces.

Arti®cial neural networks (ANNs) have been used in

recent years to avoid the problems associated with de-

terministic approaches, and have been shown to ap-

proximate nonlinear functions up to any desired level of

accuracy [8]. They are also less sensitive to noise and

incomplete information than other approaches such as

empirical models and correlations. In recent years, the

technique has been applied to many thermal problems

[1], among them the prediction of the steady state [9] and

the dynamic behavior of heat exchangers [10±12]. The

advantage of using ANNs to simulate thermal processes

is that, after they are trained, they represent a quick and

reliable way of predicting their performance. They can

also be continuously updated. Thus, if we apply this

technique to the problem of simulation and control of

HXs, then we obtain an accurate prediction with a short

computational time for the simulation which can be used

in an e�cient real-time control scheme.

There are several schemes that have been proposed

for the neural control of nonlinear systems [13±16]. One

of these is a method called internal model control (IMC)

[17±19]. This technique has been used for a variety of

problems in di�erent areas due to its excellent charac-

teristics of robustness and stability [20]. The IMC tech-

nique using ANNs consists of training a network to

learn the dynamics of a process, after which another

ANN is trained to learn the inverse dynamics so that it

can be used as a nonlinear controller [17,21].

In this work, we use the combined advantages of

ANNs and IMC to generate an e�cient real-time con-

trol scheme for a HX installed in a test facility. The HX

transfers heat from water to air, and the objective is to

control a single output variable, the outlet air tempera-

ture, by changing a single input variable, the air speed.

The system consists of the HX and the entire water- and

air-¯ow subsystems. The results of the neural control are

compared with those of standard PI and PID tech-

niques.

2. Background

2.1. Experimental setup

The experimental setup consists of a variable speed

wind tunnel facility located in the Hydronics Laboratory

at the University of Notre Dame (details are in [22]). A

single-row water-to-air ®n-tube heat exchanger is used

to obtain static and dynamic measurements. Fig. 1

shows a picture of the experimental facility. There is a

single water-side circuit which goes back and forth

across the face of the heat exchanger. This is a nominal

18 in:� 24 in: type T water coil heat exchanger manu-

factured by Trane. Type-T isolated thermocouples are

used to measure the inlet and outlet temperature of the

air and water side. The motion of the air in the tunnel is

due to a fan that is controlled by a variable speed drive

that can be operated manually or automatically from a

personal computer. The air speed is measured using a

Pitot tube, located upstream of the heat exchanger, that

is connected to a di�erential pressure transducer. The

®lter and data acquisition board used can obtain

measurements of up to 16 di�erent channels, simulta-

neously. The data acquisition board receives informa-

tion about inlet and outlet temperatures of both the air

and water side, the mass ¯ow rate of water, the air speed

and the time at which the measurements were taken. The

inlet water temperature is varied by using a heater with a

PID-controlled electrical resistance. The water ¯ow rate

is modi®ed by an electronic valve so that the percentage

of opening can be controlled as desired from the

personal computer. LabVIEW is used to acquire and

send data to the experimental system and an interface

was built in C language to simulate the neural networks

and perform the desired control action. Time-dependent

Nomenclature

c speci®c heat [J/kg K]

C ANN controller

f �t� time-dependent forcing function

F robustness ®lter

I integral control

_m mass ¯ow rate [kg/s]

M ANN model of the plant

n order of the ANN approximation

P real process or plant
_Q heat transfer rate between ¯uids [W]
_QANN heat transfer rate predicted by ANN [W]

_Qcor heat transfer rate predicted by power-law

correlations [W]

t time [s]

Dt time step [s]

T temperature [°C]

x�t� variable in di�erential equation

x0 initial condition

Subscripts and superscripts

a air side

in inlet

out outlet

w water side
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information regarding the air and water mass ¯ow rates,

_ma and _mw, respectively, the air and water inlet tem-

peratures, T a
in and T w

in , respectively, and the air and water

outlet temperatures, T a
out and T w

out, respectively, are

stored.

2.2. Arti®cial neural networks: steady-state simulations

The description, training and operation of ANNs are

available in many recent texts [23]. Input and output

data have to be supplied to the network so that it can be

trained by using an algorithm that can adjust its internal

weights and biases. It can be shown that multilayer

networks are universal approximators capable of ap-

proximating any measurable function to any desired

degree of accuracy [24]. Here, the variables to and from

the ANN are normalized to be within a �0:15; 0:85�
range. Although there are other methods, the back-

propagation algorithm [25] is one of the most common

learning methods used to train ANNs. We use it because

of its well-known adaptation and generalization char-

acteristics even though other algorithms can lead to

more accurate models.

In the steady state, the ANN predicts the heat rate

under given conditions. The steady-state heat transfer

rate, _Q, was determined from the measured temperatures

by

_Q � _mwcw T w
in

ÿ ÿ T w
out

� � _maca T a
out

ÿ ÿ T a
in

�
;

where ca and cw are the air and water speci®c heats,

respectively. Since the air and water sides give slightly

di�erent _Q (within 10%) an average value is used.

An ANN, shown schematically in Fig. 2(a), was

trained with _ma, _mw, T a
in and T w

in as inputs and _Q as

output. Fig. 2(b) shows a comparison between the heat

transfer rates obtained with the ANN, _QANN, and those

measured, _Q. Predictions obtained with a heat transfer

correlation, _Qcor, that was found earlier for the same HX

[22] are also included. It is observed that the ANN

prediction is superior to that of the correlation. It must

be pointed out that some of the measurements had

about 10% error; the predictions merely re¯ect this in-

herent inaccuracy in the data since they cannot of course

be better than the measurements. More about steady-

state predictions for thermal systems using ANNs are in

D�õaz et al. [9].

2.3. Arti®cial neural networks: dynamic simulations

For control purposes, it is not enough to have steady-

state predictions, since the process is really time-depen-

dent. It is thus of interest to extend the capabilities of the

Fig. 2. Steady-state predictions: (a) inputs and output;

(b) comparison with measurements; � correlations, + ANN

(4±5±5±1); dotted lines are �10% deviations.

Fig. 1. Experimental setup: (a) wind tunnel; (b) heat exchanger.
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ANN technique to dynamic simulations. This can be

done training the ANN providing it with the informa-

tion of the dynamic behavior as shown in Fig. 3. In this

method, no explicit information about time is provided

to the network; the variables involved in the problem are

presented at time t ÿ Dt as an input to the network and

the output corresponds to the variables at time t.

3. Dynamic predictions

The dynamic ANN developed in the previous section

is now used to predict the behavior of the HX. The in-

puts to the network are _ma, _mw, T a
in and T w

in and the

output is _Q. Fig. 4 shows the comparison between the

ANN prediction of the water and air outlet tempera-

tures, using the training method and ®ve di�erent

training curves, and the actual measurements for a step

change in the water ¯ow rate. The ®rst dip in the shape

of the T w
out curve is due to the presence of the mass of

water that was located within the HX when the water

¯ow was shut down. The second dip in T w
out is due to the

same mass of water but after going through one lap in

the water circuit. As its initial temperature was close to

T a
in, the heater is not able to raise its temperature to the

desired value after only one lap of the water circuit.

However, good predictions are achieved for both the

water and air side of the HX. Fig. 5, on the other hand,

shows the comparison between the ANN prediction,

using ®ve training curves, and the measurements taken

for a cooling process in which the heater is shut o�.

One important aspect that has to be considered when

modeling the dynamics of a system is its order. We have

to provide values of the relevant variables at previous

instants in time. This is because the ANN is simulating

an di�erential equation of unknown order. The higher

the order, the larger the number of previous instants for

which information must be provided as inputs. Enough

past information at previous instants in time that is

appropriate for the actual order of the system must be

provided, as shown in Fig. 6(a), where n is the order of

the system. This is experimentally veri®ed in Fig. 6(b)

which shows time-dependent predictions of T a
out for in-

creasing assumed order of the system. In each exper-

iment, the air speed was decreased in ®ve small steps and

then similarly increased in small steps. Both the exper-

imental measurements and the ANN predictions are

shown; the temperature is in normalized units and the

time is in terms of the sample number s. The prediction

is seen to improve as we go from n � 1 to n � 2, but

there is little observable di�erence between n � 2 and

n � 3. These measurements indicate that the order of the

system, if one has to choose an integer, is probably two

and it is not necessary to assume a higher value.

4. Temperature control

We now proceed to design an algorithm to control

T a
out. This can be achieved by controlling one or more of

the variables _mw, _ma, T w
in , and T a

in. In this work, we

con®ne ourselves to a single-input±single-output system,

and for ease of experimentation we have chosen _ma as

the control variable while keeping the others ®xed. The

relationship between _ma and T a
out is nonlinear and com-

plicated. Strictly speaking, it is a solution of a partial

di�erential equation in space and time. Some idea of the

nonlinearity of this equation can be obtained by looking

at the steady state, for which a heat balance gives

Fig. 3. Training method for dynamic problems.

Fig. 4. Prediction of transient heating: ± experiment; - - ANN (4±5±5±2).
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T a
out �

1

_maca

_Q� T a
in;

where _Q is the heat rate which also depends on _ma. Fig. 7

shows the measured function T a
out� _ma� for di�erent _mw.

The slope of the curve changes considerably with _ma

indicating that the sensitivity of the system depends on

the operating point.

There are other di�culties that increase the com-

plexity of the nonlinear control problem. First, the sys-

tem that we are controlling includes not only the HX but

also its associated hardware, i.e. fan, pump, PID-con-

trolled heater and measuring instruments such as a

water ¯ow meter and a pressure transducer. Second,

there is a delay between what happens at the HX and the

measurements of T a
out since it takes a while for the air to

¯ow from the HX to the point of measurement. As the

air speed slows down this delay is longer and it is harder

to control the air temperature. Finally, there is a gradual

change in the HX characteristics due to fouling e�ects.

ANNs are very well suited for these tasks because they

can be taught to learn the response of the system.

4.1. ANNs with IMC

IMC consists of having a model of a plant M in

parallel with the real system P, as shown in Fig. 8. The

Fig. 6. (a) Training a system of order n. (b) Response of HX treated as a system of di�erent orders. T a
out is normalized and s is the

sample number.

Fig. 5. Prediction for transient cooling; ANN (3±5±5±2).
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di�erence between the outputs of P and M is used as the

feedback for a controller C that is located in the forward

path of the control scheme. The training procedure of

such a control system using ANNs has two steps:

· We ®rst train an ANN to learn the dynamics of the

process by providing known input and output data

sets. This is M.

· Then, another ANN is trained to learn the inverse

dynamics of the process and to function as a nonlin-

ear controller C. It is trained to invert the model M

instead of trying to learn the inverse dynamics of

the actual process. By training in this way, we make

sure that we invert the steady-state gain of the model

so that the o�set can be eliminated.

For our experiments, we trained the plant model M

with information related to T a
out and _ma. These data

were obtained by taking measurements of the system

subject to small increments in the setpoint temperature.

The controller C is obtained by using a synthetic signal

which is the desired value of the air speed. This signal

is supplied to M to give a certain value of T a
out which is

then supplied as the input to the controller. The

training algorithm adjusts the weights of C to reduce

the error between the synthetic signal and the con-

troller output.

Since the ANNs only provide an approximation to

the behavior of the actual plant, we used a one param-

eter ®lter F, following the suggestion of Nahas et al. [18],

preceding the controller in the forward path to account

for plant-model mismatch. An integral control path I

was also added in parallel with F to help obtain an

o�set-free controlling action (an initial control scheme

without it failed to provide o�set-free control). There are

two constants that have to be chosen by trial and error,

the ®rst for the integral controller and the other for the

®lter.

As a large percentage of the controllers that are

currently being used correspond to proportional-integral

and proportional-integral-derivative schemes, standard

PI and PID controllers were used to compare the per-

formance with the ANN controller. This was through a

general purpose LabVIEW subroutine implementing a

PID controller based in the relations developed by

Shinskey [26], the optimal values of the PID constants

being obtained using the tuning method also explained

there. The derivative action can be shut down by means

of setting the corresponding constant equal to zero. In

this way, the same algorithm is used for both the PI and

PID controlling schemes. The two di�erent tests that

were conducted are described below.

4.2. Comparison with PID: step change in setpoint

The ®rst test was designed to observe the per-

formance of the controller subject to a step change in

the value of the setpoint temperature T a
out. The system

was taken up to a point in which the outlet air tem-

perature was near 32°C. The controller was turned on

and we waited for 40 s until the temperature remained

within a band of �0:1°C. The setpoint was then in-

creased to 36°C. Both controllers performed well and

behaved in a similar way when controlling the system

at large values of air speed. However, on approaching

the lower end of air speeds, the system became very

hard to control for two reasons. One is the e�ect of the

delay involved, and the other is the high sensitivity of

T a
out to _ma at low air speeds. This test brings the system

from a very easy-to-control point at 32°C to a hard-to-

control state at 36°C. The results are shown in Fig. 9.

It is seen that, although the ANN controller has a

slightly larger overshoot, it presents less oscillations

Fig. 7. Nonlinear relation between _ma and T w
out for di�erent

mass ¯ow rates of water. ÿ � ÿ 260 kg/s, ÿMÿ 200 kg/s, ÿ�ÿ
65 kg/s.

Fig. 8. General IMC structure plus integral control
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and it is able to bring the system to a stable condition.

On the other hand, both PI and PID controllers os-

cillate signi®cantly more and are not able to bring the

system to a steady state, but keep T a
out within 36°C by

constantly adjusting the air speed. Thus, the ANN

controller uses less energy and is more stable by

keeping the system steady instead of generating an

oscillatory controlling action.

4.3. Comparison with PID: disturbance rejection

We now analyze the disturbance rejection capabilities

of the control system. In this test, a disturbance is ap-

plied to the plant in the form of a pulse in the following

way. Once the system is at steady-state operation, we

shut down completely one of the valves on the water side

for a short time. Once again, we test the controllers at a

state that is hard to control, i.e. with T a
out � 36°C and a

low air speed. The PI controller showed the worst

performance and is left out of the comparison shown in

Fig. 10. Fig. 10(a) shows the change in the water ¯ow

rate which is the disturbance itself; the water ¯ow is shut

down between t � 40 and 70 s. After the disturbance

pulse, the controller brings the system back to steady

state. Figs. 10(b) and (c) show the change in T a
out and _ma,

respectively. Once again it is seen that the PID is not

able to bring the system to a steady-state condition while

the oscillations of the ANN controller are quickly

damped out. It is seen in Fig. 10(c) that the PID con-

troller, in trying to control the temperature, generates an

oscillatory air speed.

Fig. 9. Change in the setpoint temperature: ± ANN; - - PID; -.- PI.
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5. Conclusions

Previous work has demonstrated the usefulness of the

arti®cial neural network technique for the prediction of

the steady-state behavior of heat exchangers. In the

present, this technique is extended to the prediction of

the dynamic behavior of a thermal system which consists

of a heat exchanger working between a closed hot water

and an open air loop. The dynamic network is then used,

in conjunction with internal model control, to control

the temperature of the air coming out of the heat ex-

changer. The tests showed that the present technique

performed better than conventional PI and PID control

in certain cases.

Neural networks are powerful tools for thermal

control. They can be trained to simulate the behavior of

a dynamical system and they are adaptive. In the present

work, the network was trained o�-line, but in the future

on-line training will be incorporated to enable continu-

ous learning and adaptation to changing conditions.
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